Data mining and business analytics with R / Johannes Ledolter.  (Text) (Text)

Ledolter, Johannes
Call no.: QA76.9.D343 L436 2013Publication: Hoboken, N.J. : John Wiley & Sons, c2013Description: xi, 351 p. : ill. (some col.) ; 25 cmISBN: 9781118447147 (cloth); 111844714X (cloth)Subject(s): Data miningR (Computer program language)Commercial statisticsLOC classification: QA76.9.D343 | L436 2013
Contents:Introduction -- Processing the information and getting to know your data -- Standard linear regression -- Local polynomial regression: a nonparametric regression approach -- Importance of parsimony in statistical modeling -- Penalty-based variable selection in regression models with many parameters (LASSO) -- Logistic regression -- Binary classification, probabilities, and evaluating classification performance -- Classification using a nearest neighbor analysis --The Naive Bayesian analysis: a model predicting a categorical response from mostly categorical predictor variables -- Multinomial logistic regression -- More on classification and a discussion on discriminant analysis -- Decision trees -- Further discussion on regression and classification trees, computer software, and other useful classification methods -- Clustering -- Market basket analysis: association rules and lift -- Dimension reduction: factor models and principal components -- Reducing the dimension in regressions with multicollinear inputs: principal components regression and partial least squares -- Text as data: text mining and sentiment analysis -- Network data -- Appendices: A. Exercises -- B. References.
แท็ก: ไม่มีแท็กจากห้องสมุดสำหรับชื่อเรื่องนี้ เข้าสู่ระบบเพื่อเพิ่มแท็ก
ประเภททรัพยากร ตำแหน่งปัจจุบัน กลุ่มข้อมูล ตำแหน่งชั้นหนังสือ เลขเรียกหนังสือ สถานะ วันกำหนดส่ง บาร์โค้ด การจองรายการ หนังสืออ่านประกอบรายวิชา
Book Book Puey Ungphakorn Library, Rangsit Campus
General Books General Stacks QA76.9.D343 L436 2013 (เรียกดูชั้นหนังสือ) Show map พร้อมให้บริการ
31379014134499

คป.348 ภาคการศึกษาที่ 1

รายการจองทั้งหมด: 0

Includes bibliographical references and index.

Introduction -- Processing the information and getting to know your data -- Standard linear regression -- Local polynomial regression: a nonparametric regression approach -- Importance of parsimony in statistical modeling -- Penalty-based variable selection in regression models with many parameters (LASSO) -- Logistic regression -- Binary classification, probabilities, and evaluating classification performance -- Classification using a nearest neighbor analysis --The Naive Bayesian analysis: a model predicting a categorical response from mostly categorical predictor variables -- Multinomial logistic regression -- More on classification and a discussion on discriminant analysis -- Decision trees -- Further discussion on regression and classification trees, computer software, and other useful classification methods -- Clustering -- Market basket analysis: association rules and lift -- Dimension reduction: factor models and principal components -- Reducing the dimension in regressions with multicollinear inputs: principal components regression and partial least squares -- Text as data: text mining and sentiment analysis -- Network data -- Appendices: A. Exercises -- B. References.

There are no comments on this title.

เพื่อโพสต์ความคิดเห็น

คลิกที่รูปภาพเพื่อดูในตัวแสดงภาพ

ห้องสมุด:

Thammasat University Library, 2 Prachan Road, Phranakorn, Bangkok 10200

Puey Ungphakorn Library (Rangsit Campus), Circulation Desk 662 564-4444 ext. 1305

Pridi Banomyong Library, Circulation Desk 662 613-3544