Data mining for business analytics : concepts, techniques and applications in Python / Galit Shmueli ... [et al.].  (Text) (Text)

Shmueli, Galit, 1971-
Call no.: HF5548.2 .D28 2020Publication: Hoboken, NJ : John Wiley & Sons, Inc., 2020Description: xxix, 574 p. : illISBN: 9781119549840; 1119549841Subject(s): Business mathematics -- Computer programsBusiness -- Data processingData miningPython (Computer program language)Additional physical formats: Online version:: Data mining for business analytics.LOC classification: HF5548.2 | .D28 2020
Contents:Foreword / by Gareth James -- Foreword / by Ravi Bapna -- Preface to the Python edition -- Overview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- k-nearest neighbors (kNN) -- The naive Bayes classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant analysis -- Combining methods : ensembles and uplift modeling -- Association rules and collaborative filtering -- Cluster analysis -- Handling time series -- Regression-based forecasting -- Smoothing methods -- Social network analytics -- Text mining -- Cases.
Summary: "This book supplies insightful, detailed guidance on fundamental data mining techniques. The book guides readers through the use of Python software for developing predictive models and techniques in order to describe and find patterns in data. The authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, with a focus on analytics rather than programming. The book includes discussions of Python subroutines, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Topics covered include time series, text mining, and dimension reduction. Each chapter concludes with exercises that allow readers to expand their comprehension of the presented material. Over a dozen cases that require use of the different data mining techniques are introduced, and a related Web site features over two dozen data sets, exercise solutions, PowerPoint slides, and case solutions"--
แสดงรายการนี้ใน: TUPUEY-New Book-202007-01(foreign)
แท็ก: ไม่มีแท็กจากห้องสมุดสำหรับชื่อเรื่องนี้ เข้าสู่ระบบเพื่อเพิ่มแท็ก
ประเภททรัพยากร ตำแหน่งปัจจุบัน กลุ่มข้อมูล เลขเรียกหนังสือ สถานะ วันกำหนดส่ง บาร์โค้ด การจองรายการ
Book Book Pridi Banomyong Library
General Books HF5548.2 .D28 2020 (เรียกดูชั้นหนังสือ) Show map ยืมออก 01/06/2021 31379015828594 1
รายการจองทั้งหมด: 1

Includes bibliographical references and index.

Foreword / by Gareth James -- Foreword / by Ravi Bapna -- Preface to the Python edition -- Overview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- k-nearest neighbors (kNN) -- The naive Bayes classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant analysis -- Combining methods : ensembles and uplift modeling -- Association rules and collaborative filtering -- Cluster analysis -- Handling time series -- Regression-based forecasting -- Smoothing methods -- Social network analytics -- Text mining -- Cases.

"This book supplies insightful, detailed guidance on fundamental data mining techniques. The book guides readers through the use of Python software for developing predictive models and techniques in order to describe and find patterns in data. The authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, with a focus on analytics rather than programming. The book includes discussions of Python subroutines, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Topics covered include time series, text mining, and dimension reduction. Each chapter concludes with exercises that allow readers to expand their comprehension of the presented material. Over a dozen cases that require use of the different data mining techniques are introduced, and a related Web site features over two dozen data sets, exercise solutions, PowerPoint slides, and case solutions"--

There are no comments on this title.

เพื่อโพสต์ความคิดเห็น

คลิกที่รูปภาพเพื่อดูในตัวแสดงภาพ

ห้องสมุด:

Thammasat University Library, 2 Prachan Road, Phranakorn, Bangkok 10200

Puey Ungphakorn Library (Rangsit Campus), Circulation Desk 662 564-4444 ext. 1305

Pridi Banomyong Library, Circulation Desk 662 613-3544