Mobile microrobotics / Metin Sitti.  (Text) (Text)

Sitti, Metin
Call no.: TJ211.36 .S585 2017Series: Intelligent robotics and autonomous agents: Publication: Cambridge, MA : MIT Press, c2017Description: xxviii, 271 p. : illISBN: 9780262036436; 0262036436Subject(s): MicrorobotsMobile robotsLOC classification: TJ211.36 | .S585 2017
Contents:Machine generated contents note: 1.Introduction -- 1.1.Definition of Different Size Scale Miniature Mobile Robots -- 1.2.Brief History of Microrobotics -- 1.3.Outline of the Book -- 2.Scaling Laws for Microrobots -- 2.1.Dynamic Similarity and Non-Dimensional Numbers -- 2.2.Scaling of Surface Area and Volume and Its Implications -- 2.3.Scaling of Mechanical, Electrical, Magnetic, and Fluidic Systems -- 2.4.Example Scaled-up Study of Small-Scale Locomotion Systems -- 2.5.Homework -- 3.Forces Acting on a Microrobot -- 3.1.Some Definitions -- 3.2.Surface Forces in Air and Vacuum -- 3.2.1.Van der Waals forces -- 3.2.2.Capillary forces (surface tension) -- 3.2.3.Electrostatic forces -- 3.2.4.Comparison of general forces on micron scale -- 3.2.5.Specific interaction forces -- 3.2.6.Other geometries -- 3.3.Surface Forces in Liquids -- 3.3.1.Van der Waals forces in liquids -- 3.3.2.Double-layer forces -- 3.3.3.Hydration (steric) forces -- 3.3.4.Hydrophobic forces -- 3.3.5.SummaryNote continued: 3.4.Adhesion -- 3.5.Elastic Contact Micro/Nanomechanics Models -- 3.5.1.Other contact geometries -- 3.5.2.Viscoelastic effects -- 3.6.Friction and Wear -- 3.6.1.Sliding friction -- 3.6.2.Rolling friction -- 3.6.3.Spinning friction -- 3.6.4.Wear -- 3.7.Microfluidics -- 3.7.1.Viscous drag -- 3.7.2.Drag torque -- 3.7.3.Wall effects -- 3.8.Measurement Techniques for Microscale Force Parameters -- 3.9.Thermal Properties -- 3.10.Determinism versus Stochasticity -- 3.11.Homework -- 4.Microrobot Fabrication -- 4.1.Two-Photon Stereo Lithography -- 4.2.Wafer-Level Processes -- 4.3.Pattern Transfer -- 4.4.Surface Functionalization -- 4.5.Precision Microassembly -- 4.6.Self-Assembly -- 4.7.Biocompatibility and Biodegradability -- 4.8.Neutral Buoyancy -- 4.9.Homework -- 5.Sensors for Microrobots -- 5.1.Miniature Cameras -- 5.2.Microscale Sensing Principles -- 5.2.1.Capacitive sensing -- 5.2.2.Piezoresistive sensing -- 5.2.3.Optical sensingNote continued: 5.2.4.Magnetoelastic remote sensing -- 6.On-Board Actuation Methods for Microrobots -- 6.1.Piezoelectric Actuation -- 6.1.1.Unimorph piezo actuators -- 6.1.2.Case study: Flapping wings-based small-scale flying robot actuation -- 6.1.3.Bimorph piezo actuators -- 6.1.4.Piezo film actuators -- 6.1.5.Polymer piezo actuators -- 6.1.6.Piezo fiber composite actuators -- 6.1.7.Impact drive mechanism using piezo actuators -- 6.1.8.Ultrasonic piezo motors -- 6.1.9.Piezoelectric materials as sensors -- 6.2.Shape Memory Materials-Based Actuation -- 6.3.Polymer Actuators -- 6.3.1.Conductive polymer actuators (CPAs) -- 6.3.2.Ionic polymer-metal composite (IPMC) actuators -- 6.3.3.Dielectric elastomer actuators (DEAs) -- 6.4.MEMS Microactuators -- 6.5.Magneto- and Electrorheological Fluid Actuators -- 6.6.Others -- 6.7.Summary -- 6.8.Homework -- 7.Actuation Methods for Self-Propelled Microrobots -- 7.1.Self-Generated Gradients or Fields-Based MicroactuationNote continued: 7.1.1.Self-electrophoretic propulsion -- 7.1.2.Self-diffusiophoretic propulsion -- 7.1.3.Self-generated microbubbles-based propulsion -- 7.1.4.Self-acoustophoretic propulsion -- 7.1.5.Self-thermophoretic propulsion -- 7.1.6.Self-generated Marangoni flows-based propulsion -- 7.1.7.Others -- 7.2.Bio-Hybrid Cell-Based Microactuation -- 7.2.1.Biological cells as actuators -- 7.2.2.Integration of cells with artificial components -- 7.2.3.Control methods -- 7.2.4.Case study: Bacteria-driven microswimmers -- 7.3.Homework -- 8.Remote Microrobot Actuation -- 8.1.Magnetic Actuation -- 8.1.1.Magnetic field safety -- 8.1.2.Magnetic field creation -- 8.1.3.Special coil configurations -- 8.1.4.Non-uniform field setups -- 8.1.5.Driving electronics -- 8.1.6.Fields applied by permanent magnets -- 8.1.7.Magnetic actuation by a magnetic resonance imaging (MRI) system -- 8.1.8.6-DOF magnetic actuation -- 8.2.Electrostatic Actuation -- 8.3.Optical ActuationNote continued: 8.3.1.Opto-thermomechanical microactuation -- 8.3.2.Opto-thermocapillary microactuation -- 8.4.Electrocapillary Actuation -- 8.5.Ultrasonic Actuation -- 8.6.Homework -- 9.Microrobot Powering -- 9.1.Required Power for Locomotion -- 9.2.On-Board Energy Storage -- 9.2.1.Microbatteries -- 9.2.2.Microscale fuel cells -- 9.2.3.Supercapacitors -- 9.2.4.Nuclear (radioactive) micropower sources -- 9.2.5.Elastic strain energy -- 9.3.Wireless (Remote) Power Delivery -- 9.3.1.Wireless power transfer by radio frequency (RF) fields and microwaves -- 9.3.2.Optical power beaming -- 9.4.Energy Harvesting -- 9.4.1.Solar cells harvesting incident light -- 9.4.2.Fuel or ATP in the robot operation medium -- 9.4.3.Microbatteries powered by an acidic medium -- 9.4.4.Mechanical vibration harvesting -- 9.4.5.Temperature gradient harvesting -- 9.4.6.Others -- 9.5.Homework -- 10.Microrobot Locomotion -- 10.1.Solid Surface LocomotionNote continued: 10.1.1.Pulling- or pushing-based surface locomotion -- 10.1.2.Bio-inspired two-anchor crawling -- 10.1.3.Stick-slip-based surface crawling -- 10.1.4.Rolling -- 10.1.5.Microrobot surface locomotion examples -- 10.2.Swimming Locomotion in 3D -- 10.2.1.Pulling-based swimming -- 10.2.2.Flagellated or undulation-based bio-inspired swimming -- 10.2.3.Chemical propulsion-based swimming -- 10.2.4.Electrochemical and electroosmotic propulsion-based swimming -- 10.3.Water Surface Locomotion -- 10.3.1.Statics: Staying on fluid-air interface -- 10.3.2.Dynamic locomotion on fluid-air interface -- 10.4.Flight -- 10.5.Homework -- 11.Microrobot Localization and Control -- 11.1.Microrobot Localization -- 11.1.1.Optical tracking -- 11.1.2.Magnetic tracking -- 11.1.3.X-ray tracking -- 11.1.4.Ultrasound tracking -- 11.2.Control, Vision, Planning, and Learning -- 11.3.Multi-Robot Control -- 11.3.1.Addressing through localized trappingNote continued: 11.3.2.Addressing through heterogeneous robot designs -- 11.3.3.Addressing through selective magnetic disabling -- 11.4.Homework -- 12.Microrobot Applications -- 12.1.Micropart Manipulation -- 12.1.1.Contact-based mechanical pushing manipulation -- 12.1.2.Capillary forces-based contact manipulation -- 12.1.3.Non-contact fluidic manipulation -- 12.1.4.Autonomous manipulation -- 12.1.5.Bio-object manipulation -- 12.1.6.Team manipulation -- 12.1.7.Microfactories -- 12.2.Health Care -- 12.3.Environmental Remediation -- 12.4.Reconfigurable Microrobots -- 12.5.Scientific Tools -- 13.Summary and Open Challenges -- 13.1.Status Summary -- 13.2.What Next?.
Summary: "Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools." -- Publisher's description
แสดงรายการนี้ใน: TUPUEY-New Book-202110-01 (eng)
แท็ก: ไม่มีแท็กจากห้องสมุดสำหรับชื่อเรื่องนี้ เข้าสู่ระบบเพื่อเพิ่มแท็ก
ประเภททรัพยากร ตำแหน่งปัจจุบัน กลุ่มข้อมูล ตำแหน่งชั้นหนังสือ เลขเรียกหนังสือ สถานะ วันกำหนดส่ง บาร์โค้ด การจองรายการ
Book Book Puey Ungphakorn Library, Rangsit Campus
General Books General Stacks TJ211.36 .S585 2017 (เรียกดูชั้นหนังสือ) Show map ยืมออก 31/01/2022 3137901640203
รายการจองทั้งหมด: 0

Includes bibliographical references (pages 245-268) and index.

Machine generated contents note: 1.Introduction -- 1.1.Definition of Different Size Scale Miniature Mobile Robots -- 1.2.Brief History of Microrobotics -- 1.3.Outline of the Book -- 2.Scaling Laws for Microrobots -- 2.1.Dynamic Similarity and Non-Dimensional Numbers -- 2.2.Scaling of Surface Area and Volume and Its Implications -- 2.3.Scaling of Mechanical, Electrical, Magnetic, and Fluidic Systems -- 2.4.Example Scaled-up Study of Small-Scale Locomotion Systems -- 2.5.Homework -- 3.Forces Acting on a Microrobot -- 3.1.Some Definitions -- 3.2.Surface Forces in Air and Vacuum -- 3.2.1.Van der Waals forces -- 3.2.2.Capillary forces (surface tension) -- 3.2.3.Electrostatic forces -- 3.2.4.Comparison of general forces on micron scale -- 3.2.5.Specific interaction forces -- 3.2.6.Other geometries -- 3.3.Surface Forces in Liquids -- 3.3.1.Van der Waals forces in liquids -- 3.3.2.Double-layer forces -- 3.3.3.Hydration (steric) forces -- 3.3.4.Hydrophobic forces -- 3.3.5.Summary

Note continued: 3.4.Adhesion -- 3.5.Elastic Contact Micro/Nanomechanics Models -- 3.5.1.Other contact geometries -- 3.5.2.Viscoelastic effects -- 3.6.Friction and Wear -- 3.6.1.Sliding friction -- 3.6.2.Rolling friction -- 3.6.3.Spinning friction -- 3.6.4.Wear -- 3.7.Microfluidics -- 3.7.1.Viscous drag -- 3.7.2.Drag torque -- 3.7.3.Wall effects -- 3.8.Measurement Techniques for Microscale Force Parameters -- 3.9.Thermal Properties -- 3.10.Determinism versus Stochasticity -- 3.11.Homework -- 4.Microrobot Fabrication -- 4.1.Two-Photon Stereo Lithography -- 4.2.Wafer-Level Processes -- 4.3.Pattern Transfer -- 4.4.Surface Functionalization -- 4.5.Precision Microassembly -- 4.6.Self-Assembly -- 4.7.Biocompatibility and Biodegradability -- 4.8.Neutral Buoyancy -- 4.9.Homework -- 5.Sensors for Microrobots -- 5.1.Miniature Cameras -- 5.2.Microscale Sensing Principles -- 5.2.1.Capacitive sensing -- 5.2.2.Piezoresistive sensing -- 5.2.3.Optical sensing

Note continued: 5.2.4.Magnetoelastic remote sensing -- 6.On-Board Actuation Methods for Microrobots -- 6.1.Piezoelectric Actuation -- 6.1.1.Unimorph piezo actuators -- 6.1.2.Case study: Flapping wings-based small-scale flying robot actuation -- 6.1.3.Bimorph piezo actuators -- 6.1.4.Piezo film actuators -- 6.1.5.Polymer piezo actuators -- 6.1.6.Piezo fiber composite actuators -- 6.1.7.Impact drive mechanism using piezo actuators -- 6.1.8.Ultrasonic piezo motors -- 6.1.9.Piezoelectric materials as sensors -- 6.2.Shape Memory Materials-Based Actuation -- 6.3.Polymer Actuators -- 6.3.1.Conductive polymer actuators (CPAs) -- 6.3.2.Ionic polymer-metal composite (IPMC) actuators -- 6.3.3.Dielectric elastomer actuators (DEAs) -- 6.4.MEMS Microactuators -- 6.5.Magneto- and Electrorheological Fluid Actuators -- 6.6.Others -- 6.7.Summary -- 6.8.Homework -- 7.Actuation Methods for Self-Propelled Microrobots -- 7.1.Self-Generated Gradients or Fields-Based Microactuation

Note continued: 7.1.1.Self-electrophoretic propulsion -- 7.1.2.Self-diffusiophoretic propulsion -- 7.1.3.Self-generated microbubbles-based propulsion -- 7.1.4.Self-acoustophoretic propulsion -- 7.1.5.Self-thermophoretic propulsion -- 7.1.6.Self-generated Marangoni flows-based propulsion -- 7.1.7.Others -- 7.2.Bio-Hybrid Cell-Based Microactuation -- 7.2.1.Biological cells as actuators -- 7.2.2.Integration of cells with artificial components -- 7.2.3.Control methods -- 7.2.4.Case study: Bacteria-driven microswimmers -- 7.3.Homework -- 8.Remote Microrobot Actuation -- 8.1.Magnetic Actuation -- 8.1.1.Magnetic field safety -- 8.1.2.Magnetic field creation -- 8.1.3.Special coil configurations -- 8.1.4.Non-uniform field setups -- 8.1.5.Driving electronics -- 8.1.6.Fields applied by permanent magnets -- 8.1.7.Magnetic actuation by a magnetic resonance imaging (MRI) system -- 8.1.8.6-DOF magnetic actuation -- 8.2.Electrostatic Actuation -- 8.3.Optical Actuation

Note continued: 8.3.1.Opto-thermomechanical microactuation -- 8.3.2.Opto-thermocapillary microactuation -- 8.4.Electrocapillary Actuation -- 8.5.Ultrasonic Actuation -- 8.6.Homework -- 9.Microrobot Powering -- 9.1.Required Power for Locomotion -- 9.2.On-Board Energy Storage -- 9.2.1.Microbatteries -- 9.2.2.Microscale fuel cells -- 9.2.3.Supercapacitors -- 9.2.4.Nuclear (radioactive) micropower sources -- 9.2.5.Elastic strain energy -- 9.3.Wireless (Remote) Power Delivery -- 9.3.1.Wireless power transfer by radio frequency (RF) fields and microwaves -- 9.3.2.Optical power beaming -- 9.4.Energy Harvesting -- 9.4.1.Solar cells harvesting incident light -- 9.4.2.Fuel or ATP in the robot operation medium -- 9.4.3.Microbatteries powered by an acidic medium -- 9.4.4.Mechanical vibration harvesting -- 9.4.5.Temperature gradient harvesting -- 9.4.6.Others -- 9.5.Homework -- 10.Microrobot Locomotion -- 10.1.Solid Surface Locomotion

Note continued: 10.1.1.Pulling- or pushing-based surface locomotion -- 10.1.2.Bio-inspired two-anchor crawling -- 10.1.3.Stick-slip-based surface crawling -- 10.1.4.Rolling -- 10.1.5.Microrobot surface locomotion examples -- 10.2.Swimming Locomotion in 3D -- 10.2.1.Pulling-based swimming -- 10.2.2.Flagellated or undulation-based bio-inspired swimming -- 10.2.3.Chemical propulsion-based swimming -- 10.2.4.Electrochemical and electroosmotic propulsion-based swimming -- 10.3.Water Surface Locomotion -- 10.3.1.Statics: Staying on fluid-air interface -- 10.3.2.Dynamic locomotion on fluid-air interface -- 10.4.Flight -- 10.5.Homework -- 11.Microrobot Localization and Control -- 11.1.Microrobot Localization -- 11.1.1.Optical tracking -- 11.1.2.Magnetic tracking -- 11.1.3.X-ray tracking -- 11.1.4.Ultrasound tracking -- 11.2.Control, Vision, Planning, and Learning -- 11.3.Multi-Robot Control -- 11.3.1.Addressing through localized trapping

Note continued: 11.3.2.Addressing through heterogeneous robot designs -- 11.3.3.Addressing through selective magnetic disabling -- 11.4.Homework -- 12.Microrobot Applications -- 12.1.Micropart Manipulation -- 12.1.1.Contact-based mechanical pushing manipulation -- 12.1.2.Capillary forces-based contact manipulation -- 12.1.3.Non-contact fluidic manipulation -- 12.1.4.Autonomous manipulation -- 12.1.5.Bio-object manipulation -- 12.1.6.Team manipulation -- 12.1.7.Microfactories -- 12.2.Health Care -- 12.3.Environmental Remediation -- 12.4.Reconfigurable Microrobots -- 12.5.Scientific Tools -- 13.Summary and Open Challenges -- 13.1.Status Summary -- 13.2.What Next?.

"Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools." -- Publisher's description

There are no comments on this title.

เพื่อโพสต์ความคิดเห็น

คลิกที่รูปภาพเพื่อดูในตัวแสดงภาพ

ห้องสมุด:

Thammasat University Library, 2 Prachan Road, Phranakorn, Bangkok 10200

Puey Ungphakorn Library (Rangsit Campus), Circulation Desk 662 564-4444 ext. 1305

Pridi Banomyong Library, Circulation Desk 662 613-3544