Practical statistics for data scientists : 50+ essential concepts using R and Python / Peter Bruce, Andrew Bruce, and Peter Gedeck.  (Text) (Text)

Bruce, Peter C, 1953-
Bruce, Andrew, 1958- | Gedeck, Peter
Call no.: QA276.4 .B783 2020Publication: Sebastopol, Calif. : O'Reilly Media, Inc., 2020Edition: 2nd edDescription: xvi, 342 p. : illISBN: 9781492072942 (paperback); 149207294X (paperback)Subject(s): Mathematical analysis -- Statistical methodsQuantitative research -- Statistical methodsR (Computer program language)Python (Computer program language)Statistics -- Data processingLOC classification: QA276.4 | .B783 2020
Contents:Exploratory Data Analysis -- Data and Sampling Distributions -- Statistical Experiments and Significance Testing -- Regression and Prediction -- Classification -- Statistical Machine Learning -- Unsupervised Learning.
Summary: Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this practical guide-now including examples in Python as well as R-explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data scientists use statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages, and have had some exposure to statistics but want to learn more, this quick reference bridges the gap in an accessible, readable format. With this updated edition, you'll dive into: Exploratory data analysis Data and sampling distributions Statistical experiments and significance testing Regression and prediction Classification Statistical machine learning Unsupervised learning.
แสดงรายการนี้ใน: TUPOL-New Book-2021 12
แท็ก: ไม่มีแท็กจากห้องสมุดสำหรับชื่อเรื่องนี้
ประเภททรัพยากร ตำแหน่งปัจจุบัน กลุ่มข้อมูล ตำแหน่งชั้นหนังสือ เลขเรียกหนังสือ สถานะ วันกำหนดส่ง บาร์โค้ด การจองรายการ
Book Book Professor Direk Jayanama Library
General Books General Stacks QA276.4 .B783 2020 (เรียกดูชั้นหนังสือ) พร้อมให้บริการ
31379016152135
รายการจองทั้งหมด: 0

Includes bibliographical references (pages 327-328) and index.

Exploratory Data Analysis -- Data and Sampling Distributions -- Statistical Experiments and Significance Testing -- Regression and Prediction -- Classification -- Statistical Machine Learning -- Unsupervised Learning.

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this practical guide-now including examples in Python as well as R-explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data scientists use statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages, and have had some exposure to statistics but want to learn more, this quick reference bridges the gap in an accessible, readable format. With this updated edition, you'll dive into: Exploratory data analysis Data and sampling distributions Statistical experiments and significance testing Regression and prediction Classification Statistical machine learning Unsupervised learning.

There are no comments on this title.

เพื่อโพสต์ความคิดเห็น

คลิกที่รูปภาพเพื่อดูในตัวแสดงภาพ

ห้องสมุด:

Thammasat University Library, 2 Prachan Road, Phranakorn, Bangkok 10200

Puey Ungphakorn Library (Rangsit Campus), Circulation Desk 662 564-4444 ext. 1305

Pridi Banomyong Library, Circulation Desk 662 613-3544